Day 5

Applications of the Dot Product

- <u>Vector Projections</u>
 - Can we break **v** into components that are || and \perp to **w**?

• $\vec{v} = \vec{v}_{\parallel} + \vec{v}_{\perp}$

- How much of **v** goes in the direction of **w**?
- If there were a light above \mathbf{v} , what shadow would \mathbf{v} cast on \mathbf{w} ?
- o <u>Procedure</u>
 - Show the length of $\vec{v}_{\parallel} = \parallel \vec{v} \parallel \cos(\theta)$
 - Show that $\vec{u} \cdot \vec{v} = \|\vec{v}\| \cos(\theta)$, where **u** is a unit vector in the direction of **w**.
 - So *u* x v gives the scalar amount of v in the direction of u or the length of v
 _µ.
 - The <u>vector</u> we want has length given by $\vec{u} \times \vec{v}$ and the direction of **u**.
 - So $\vec{v}_{\parallel} = (\vec{u} \cdot \vec{v})\vec{u}$, where the $(\vec{u} \cdot \vec{v})$ gives the length of the vector we're looking for and the unit vector **u** gives it the correct direction.
 - To find \vec{v}_{\perp} note that $\vec{v} = \vec{v}_{\parallel} + \vec{v}_{\perp}$ so if we solve this equation for \vec{v}_{\perp} we get $\vec{v}_{\perp} = \vec{v} \vec{v}_{\parallel}$.
- o <u>Example:</u>
 - Find the vector projection of $\vec{A} = \hat{i} + 4\hat{j}$ on to $\vec{B} = 3\hat{i} + 4\hat{j}$. NOTE: Another way to say this is: write **A** as the sum of vectors || and \perp to **B**
 - 🖉 You Try It

Section 13.3 #46 Answer:
$$\vec{F}_{\parallel} = \frac{-29}{5} \left(\frac{3}{5} \hat{i} + \frac{4}{5} \hat{j} \right)$$

- Equations of Planes using vectors
 - Find the equation of a plane which is \perp to $\vec{v} = \hat{i} + 2\hat{j} + 3\hat{k}$ and passes through the point (4,5,6)
 - Note that this similar to lines in 2D: in 2D you are given a point and the "direction" of the line given by the slope. In 3D, you are given a point and the "direction" of the plane given by the perpendicular vector.
 - Procedure
 - Let (x,y,z) be any point in the plane.
 - Form the vector from the point (4,5,6) to the point (x,y,z).

• Final – Initial: $\vec{A} = (x-4)\hat{i} + (y-5)\hat{j} + (z-6)\hat{k}$

- Since these points (4,5,6) and (x,y,x) are both in the plane the vector we formed A, is also in the plane.
- The given vector $\vec{v} = \hat{i} + 2\hat{j} + 3\hat{k}$ is \perp to the plane and therefore \perp to the vector **A**.

- The dot product between these two vectors must be 0.
 - This gives us x + 2y = 3z = 32.
 - We DO NOT need to go through this whole procedure every time.
 - Note that the coefficients of the variables in the plane equation are the coefficients of the i, j, and k vectors in the given plane. This is <u>always</u> true.
 - So we can short cut the process by just writing down the left hand side of the plane equation = D and then use the given point to find D.
- In general: If $\vec{n} = a\hat{i} + b\hat{j} + c\hat{k}$ is a vector perpendicular to a plane then the plane equation is given by ax + by + cz = D.
 - Nou Try It
 - Section 13.3 # 13 Answer in Text
 - 🖉 You Try It
 - Section 13.3 #15 Answer in Text