

Day 4

- Vectors
 - Quantities that are represented with both magnitude and direction
 - Scalar(only magnitude)
 - Temp
 - Time
 - Volume
 - Mass
 - Vectors
 - Velocity
 - Displacement
 - Acceleration
 - Force (gravity, electro magnetic)
 - Displacement vectors –how did you get from here to there?
 - Tip, tail
 - A, 2a, -2a
 - Adding vectors: tip to tail
 - Component form
 - i, j unit vectors
 - \hat{i} vector one unit long in the direction of the x-axis
 - \hat{j} vector one unit long in the direction of the y-axis
 - Show $3i + 4j$ starting at origin then same vector not at the origin – Portable!!
 - How long is this vector? Magnitude Formula – Pythagorean theorem
 - If $\vec{v} = a\hat{i} + b\hat{j}$ then, $\|\vec{v}\| = \sqrt{a^2 + b^2}$

 You Try It

Section 13.1 1,5,15 Answers in Text

- Write components for a vector from (-1,3) to (4,5)
 - Do this “by hand” first and then state “Final – initial”
 - How long is this vector?
 - Then find a vector that is 10 units long in this same direction.
- *You Try It*

Section 13.1 3, 29 Answers in Text
- How can we tell if 2 vectors are parallel?
 - Are these parallel?
 - $A = 2i - 3j + k$ and $B = -8i + 12j - 4k$
 - $A = 6i + 2j$ and $B = 3i + 4j$
- Example: Boat travels 2 miles at angle of 37° . Write this displacement vector in component form.
 - $D = 1.6i + 1.2j$

 You Try It

Section 13.2 7 Answers in Text

- All of what we said can be extended to 3D with the unit vector \hat{k} , parallel to the z-axis.
- Vector multiplication: Dot Product and Cross Product
 - [Dot Product \(scalar product\)](#)
 - Geometric Form: $\vec{v} \cdot \vec{w} = \|\vec{v}\| \|\vec{w}\| \cos(\theta)$, where θ is the angle between the two vectors
 - Component Form: $\vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2 + v_3 w_3$, given $\vec{v} = v_1 \hat{i} + v_2 \hat{j} + v_3 \hat{k}$ and $\vec{w} = w_1 \hat{i} + w_2 \hat{j} + w_3 \hat{k}$.
 - To see why these forms are equivalent watch this [video](#) with guest lecturer James Lang
 - Find $\vec{v} \cdot \vec{w}$ if $\vec{v} = \hat{i} + 3\hat{j}$ and $\vec{w} = 5\hat{i} + 2\hat{j}$
 - What is the dot product of two vectors that are perpendicular? Why?
 - Is the dot product always positive? Why?
 - [Find the angle](#) between $\vec{v} = \hat{i} + 3\hat{j}$ and $\vec{w} = 5\hat{i} + 2\hat{j}$.
- ✍ *You Try It*

Are $\vec{v} = 3\hat{i} + 2\hat{j} - 6\hat{k}$ and $\vec{w} = -12\hat{j} - 3\hat{k}$

 - perpendicular?
 - Parallel?
 - Is the angle between the two vectors bigger or smaller than 90° ? Answer this without a calculator!
 - Use a calculator to find the angle between \mathbf{v} and \mathbf{w} .

[Answer Video](#)