Day 27 How about a short cut? Or..... The Fundamental Theorem of Line Integrals

- <u>Recap</u> of Day 26- the Reader's Digest Condensed version.
- Consider the vector field: $\vec{F} = 2xy^4\hat{i} + 4x^2y^3\hat{j}$
 - <u>Calculate</u> $\dot{O}\vec{r} \times d\vec{r}$ for the parabola from (0,0) to (2,4).

You Try It :

Calculate $\dot{\mathbf{O}}^{\vec{r}} \times d\vec{r}$ for the line from (0,0) to (2,4).

- What's "special" about this vector field that makes it path independent?
- Observe that $\vec{F} = 2xy^4\hat{i} + 4x^2y^3\hat{j}$ is the *gradient* of the function $f(x,y) = x^2y^4$. Check it out! If you're wondering where the $f(x,y) = x^2y^4$ came from stand by. At this point just recognize that, for this vector field, $\vec{F} = 2xy^4\hat{i} + 4x^2y^3\hat{j}$, $\nabla f = \vec{F}$, where $f(x,y) = x^2y^4$. Another way to say this is $\vec{F} = \overline{grad}(x^2y^4)$. Therefore \vec{F} is called a *path independent* vector field or a *conservative* vector field.

• The Fundamental Theorem of Line Integrals:

If \vec{F} is conservative then:

 $\partial_{C}\vec{F} \times d\vec{r} = \int_{C} \nabla f \cdot d\vec{r} = f(Q) - f(P)$, where f(x, y) has gradient vector, $\vec{F}(x, y)$, and *C* is piecewise smooth curve and P is the starting point and Q the ending point of the curve *C*. The function, f(x, y) is called the **potential function** for the vector field.

- <u>Let's use the Fundamental Theorem of Line Integrals</u> on our example:
 - Calculate $\overrightarrow{O}_{C} \neq d\vec{r}$ for the line(or the parabola) from (0,0) to

$$(2,4). \vec{F} = 2xy^4\hat{i} + 4x^2y^3\hat{j}.$$

- But where did the $f(x,y) = x^2y^4$ come from and how can I tell if the vector field is conservative(path independent)?
 - Example 1: Determine if $\vec{F}(x,y) = (2x+y)\hat{i} + (x+y^3)\hat{j}$ is conservative.

• Example 2: Determine if $\vec{F}(x, y) = (x + y)\hat{i} + (xy)\hat{j}$ is conservative.

You Try It :

Determine if $\vec{F}(x,y) = 2x \hat{i} + 3y \hat{j}$ is conservative.

• So now we know how to tell if a vector field is conservative, if it is, how do we find the potential function *f*(*x*, *y*)?

• Example 3: Find the potential function f(x, y) for the conservative vector field given in Example 1: $\vec{F}(x, y) = (2x + y)\hat{i} + (x + y^3)\hat{j}$.

You Try It :

Find the potential function f(x, y) for the conservative vector field given in the *You Try It*: $\vec{F}(x, y) = 2x \hat{i} + 3y \hat{j}$. Answer given in Example 5 below.

- Using the Fundamental Theorem of Line Integrals
 - Example 4: Calculate $\partial \vec{F} \times d\vec{r}$ for the vector field in Example 1,

 $\vec{F}(x,y) = (2x+y)\hat{i} + (x+y^3)\hat{j}$ and the path C, given by the straight line going from the point (0,2) to the point (2,0).

• Example 5: Calculate $\partial \vec{F} \times d\vec{r}$ for the vector field in the You Try It,

 $\vec{F}(x,y) = 2x \hat{i} + 3y \hat{j}$ and the path C, given by the unit square, centered at the origin, starting on the x-axis and going counter *clockwise*.

• If *C* is a closed path and \vec{F} is conservative then:

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C} \vec{\nabla} f \cdot d\vec{r} = \mathbf{\hat{Q}}^{P} \frac{df}{dt} dt = f(P) - f(P) = 0$$

You Try It :

Find $\overrightarrow{P}_{C} \overrightarrow{F} \times d\overrightarrow{r}$ for the vector field given by $\overrightarrow{F}(x,y) = 2x \ \hat{i} + 3y \ \hat{j}$ for the curve $C_1: y = 2 - 2x^2$ from the point (0,2) to the point (1,0).

- Let's put it all together!
 - Example 6: Calculate $\partial \vec{F} \times d\vec{r}$ for the

vector field $\vec{F}(x,y) = (x+y)\hat{i} + (x)\hat{j}$ and the path C, shown in the graph, from P(3,0) to $Q\left(-\frac{3}{2},\frac{3\sqrt{3}}{2}\right)$.

You Try It :

Section 18.3 #45. Answer in Text.

- <u>Summary:</u>
 - Test to see if the vector field is conservative.

- If it is, integrate to find the potential function and use the Fundamental Theorem of Line Integrals: f(endpoint) – f(initial point), where f is the potential function.
- If the vector field is not conservative, then you must use the "direct" method of calculation from Day 26.
- If the vector field is conservative, and if the path is closed, then

$$\dot{\mathbf{O}}_{C}^{\vec{F}} \times d\vec{r} = 0.$$