

Day 25

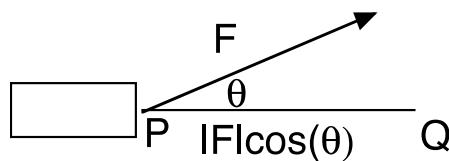
Vector Fields and Line Integrals

- Vector Field is a vector function that assigns a vector to each point in space.
 - Velocity Fields
 - Fluid Flow
 - Wind Flow
 - Force Fields
 - Gravitational
 - Electromagnetic
 - Example 1: $\vec{F}(x, y) = (x - 2y)\hat{i} + (x + y)\hat{j}$
 - By Hand
 - On Computer
 - Example 2: For the following think it out, then draw by hand, then go to the computer to check.
 - Draw the vector field given by $\vec{F}(x, y) = y\hat{i}$

You Try it

Draw the vector field given by $\vec{G}(x, y) = y\hat{j}$ Check on the computer.

- Example 3: Gradient Vector Fields
 - Let $f(x, y) = 5 - x^2 - y^2$. Then the gradient vector $\vec{\nabla}f = -2x\hat{i} - 2y\hat{j}$ is a vector field.
- Line Integrals
 - Measures the extent to which a curve in a vector field is, overall, going with the vector field or against it.
 - Recall: Work = Force \times Distance
 - If \vec{F} is in the direction of motion, then Work = Force \times Distance
 - But if



then Work = Force in the direction of motion \times Distance

$$\begin{aligned} \text{Work} &= \|\vec{F}\| \cos(\theta) \|\overline{PQ}\| \\ &= \|\vec{F}\| \|\overline{PQ}\| \cos(\theta) \\ &= \vec{F} \cdot \overline{PQ} \end{aligned}$$

- Now, suppose we have a vector field and an oriented curve.....

- $W = \sum_{i=1}^n \vec{F} \cdot \Delta \vec{r}_i$
- Let $\|\Delta \vec{r}\| \rightarrow 0$ or $n \rightarrow \infty$
- $W = \lim_{\|\Delta \vec{r}\| \rightarrow 0} \sum_{i=1}^n \vec{F} \cdot \Delta \vec{r}_i = \int_C \vec{F} \cdot d\vec{r}$: Work done by \vec{F} along C .

- Interpreting $\int_C \vec{F} \cdot d\vec{r}$
 - In general, the line integral of a vector field \vec{F} along a curve C measures the extent to which C is going with \vec{F} or against it.
 - The line integral is 0 if \vec{F} is perpendicular to the path at all points or if the positive and negative contributions cancel each other out.
 - If \vec{F} is mostly pointing in the same direction as C then the line integral is positive and it will be negative if they are acting in opposite directions. However, care must be given to also consider the magnitude of \vec{F} .
 - Example 4: Arrange the line integrals $\int_C_i \vec{F} \cdot d\vec{r}$, for $i = 1, 2, 3, 4$ in ascending order.

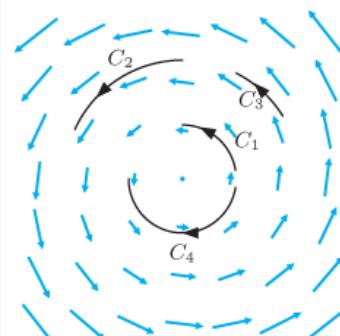


Figure 18.5 Vector field and paths C_1, C_2, C_3, C_4

 You Try It
Section 18.1 #30 Answer: C_2 .

- Calculating a “basic” $\int_C \vec{F} \cdot d\vec{r}$
 - Example 5: Calculate the line integral: $\int_C \vec{F} \cdot d\vec{r}$ if $\vec{F} = y\hat{i}$, from $(0,1)$ to $(0,5)$.
 - Example 6: Calculate the line integral: $\int_C \vec{F} \cdot d\vec{r}$ if $\vec{F} = 6\hat{i} + y^2\hat{j}$, from $(3,0)$ to $(7,0)$.

 You Try It
Section 18.1 #7 Answer: 0.

- If C is a closed curve then $\int_C \vec{F} \cdot d\vec{r}$ is called the **circulation** of \vec{F} around C .

Wrap Up