

Day 22

Position, Velocity and Acceleration vectors

- [Position vectors and parameterized curves](#)

- $\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j}$
- For example, the parametric equations for the circle, $x(t) = \cos(t)$, $y(t) = \sin(t)$, can be written with the position vector $\vec{r}(t) = \cos(t)\hat{i} + \sin(t)\hat{j}$. The tip of the vector traces out the circle as t changes.

- [Using the 3D Plotter](#)

- [Helix:](#)

$$x(t) = 3\cos(t)$$

$$y(t) = 3\sin(t)$$

$$z(t) = t$$

$$\vec{r}(t) = 3\cos(t)\hat{i} + 3\sin(t)\hat{j} + t\hat{k}$$

- Velocity, Speed and Acceleration

- [Example 1:](#) $\vec{r}(t) = 30t\hat{i} + (48t - 16t^2)\hat{j}$

- Find the velocity vector $\vec{v}(t)$ and $\vec{v}(2)$
- Find the speed, $\|\vec{v}(t)\|$ and $\|\vec{v}(2)\|$.
- Velocity is tangent to the curve in the direction of motion.
- Find the acceleration vector, $\vec{a}(t)$.

- In general,

Position: $\vec{r}(t)$ Traces out the motion of the particle.

Velocity: $\vec{v}(t) = \vec{r}'(t)$ Tangent to the curve in the direction of motion.

Speed: $\|\vec{v}(t)\|$ Magnitude of the velocity

Acceleration: $\vec{a}(t) = \vec{v}'(t) = \vec{r}''(t)$

- [Helix: Velocity, Speed, Acceleration](#)

You Try It

Do Section 17.2 # 1,7 Answer in Text

- Uniform Circular Motion

- [Example 2:](#) For $\vec{r}(t) = 2\cos(\pi t)\hat{i} + 2\sin(\pi t)\hat{j}$, $0 \leq t \leq 2$

- Find $\vec{r}(1)$, $\vec{v}(1)$ and $\vec{a}(1)$.
- Is $\vec{a}(1) \perp \vec{v}(1)$?
- Is $\vec{a}(t) \perp \vec{v}(t)$ for all t ?

You Try It

Do Section 17.2 # 17 Answer in Text

- **Example 3:** A child wanders down a circular staircase from the top of a tower. With x , y and z in feet and the origin at the base of the tower, her position from the start is given by

$$x(t) = 10 \cos(t)$$

$$y(t) = 10 \sin(t)$$

$$z(t) = 90 - 5t$$

- How tall is the tower?
- When does the child reach the bottom?
- What is her speed at time t ? At $t = \pi$?
- What is her acceleration at time t ?

From: *Calculus* Hughes- Hallet, et al.