

Day 2

Go To Class

- [Intro to Graphs in 3D](#)
 - [Sketch 8 graphs you know by heart – no graphing calculator](#)
 - Shifting
- [What happens in 3D?](#)
 - In 2D for each input (x) the output (y) tells you how far to go up or down
 - In 3D inputs are (x,y) pairs and the output(z) tells you how far to move up or down.
 - Is the result still a “wire” or is it a “surface”?
 - In 2 – D, when you didn’t know what a graph looked like, you may have plotted points and then connected the dots (trusting the graph went thru all the points between the values you plotted)
 - What to do in 3D? Plot points? Not good.
 - Helps to look at cross – sections.
- Cross sections of some 3D objects
 - Cross sections of 3D objects are 2D
 - Cross Sections of Everyday Objects.
 - [Book](#)
 - [Can, Cup](#)
 - Basketball, Football
- [Now I'll tell you what the cross sections look like and you tell me what the object looks like.](#)
 - Slices || to floor(Horizontal cross sections) same size squares all the way from top to bottom and slices || to each wall(Vertical Cross sections) same size squares.
 - Slices|| to floor (Horizontal cross sections) are Circles smallest at the bottom, largest at the top, and slices || to each wall (Vertical Cross sections) are triangles

 You Try It

Write a sentence describing the cross sections of a triangular prism.

[Link to Discussion](#)

- Cross Sections of 3-D functions given as equations

Consider the graph of $z = x^2 + y^2$

- [Graph the function in the Free 3D Plotter](#)
- Start with horizontal Cross Sections
 - Intersect the graph with planes parallel to the xy plane.
 - Planes parallel to the xy plane have equation $z = \text{constant}$.
 - Intersection are circles, centered at the origin, with radius getting larger as we go up the z – axis.
- What about the vertical cross sections?
 - Intersect the graph with planes parallel to the yz plane.
 - Planes parallel to the yz plane have equation $x = \text{constant}$.

- Intersection are parabolas shifting up the z axis as x gets further from the yz plane.
- Intersect the graph with planes parallel to the xz plane.
- Planes parallel to the xz plane have equation $y = \text{constant}$.
- Intersections are parabolas shifting up the z axis as y gets further from the xz plane.
- Cross Sections by hand
 - Vertical Cross Sections
 - [x - Cross Sections](#)
 - Hold x constant in equation
 - Draw 2D graph on yz plane
 - Label x values on each curve

 You Try It

- y - Cross Sections
 - Hold y constant in equation
 - Draw 2D graph on xz plane
 - Label y values on each curve

[Link To Discussion Board](#)

- Horizontal Cross Sections
 - [Contour Diagram](#)
 - Hold z constant in equation
 - Draw 2D graph on xy plane
 - Label z values on each curve
 - Each curve is called a level curve in a contour diagram
 - Topographical Map is a Contour Diagram
 - [Only choose z values in the range of the function](#)

 You Try It

Try Section 12.3 #9

- [3D Graphs you should know by heart](#)
 - Paraboloids - with shifting
 - Spheres
 - Saddles
 - [Cylinders](#)
 - Circular cylinder example
 - ID by only 2 variables in the equation instead of 3.
 - Any 2D pic stretched in the missing variable direction.

 You Try It

Sketch a graph of $z = e^y$

[Link to Discussion Board](#)