Day 17

Unit 3 Intro

Double Integration

- Recall From Calc I...
 - Estimating area under the curve

$$\circ \lim_{\Delta x \to 0} \sum_{i=1}^{n} f(x_i) \ \Delta x = \int_{a}^{b} f(x) \ dx$$

- In Calc III.....
 - Developer wants to buy a parcel of land. How much does the parcel cost?
 - Constant price/yd²
 - Non-constant price/yd²
 - Contour Diagram
 - On average, what is the price per acre? Note: $4840 \text{ yd}^2 = 1 \text{ acre}$

$$\circ \lim_{\Delta x, \Delta y \to 0} \sum f(x_i, y_j) \, \Delta x \, \Delta y = \int_{\mathbb{R}} f(x, y) \, dA$$

- o If x,y, and z are lengths, then the volume under f(x,y) and above R is $V = \int_{\mathbb{R}} f(x,y) \, dA$.
- The average value of f(x, y), no matter what f stands for is

$$f_{average} = \frac{1}{Area \ of \ R} \prod_{R} f(x, y) \ dA$$

○ Example: Give a lower estimate for f(x,y) dA where $f(x,y) = 100 - x^2 - y^2$ and $R: 1 \le x \le 3, 0 \le y \le 6$. Use $\Delta x = 1$ and

$$f(x,y) = 100 - x^2 - y^2$$
 and $R: 1 \le x \le 3$, $0 \le y \le 6$. Use $\Delta x = 1$ and $\Delta y = 2$.

You Try It

Give an Upper Approximation for the problem above. Answer: 1096

- o How do we calculate the integral exactly?
 - Revisit the land problem

$$\lim_{\Delta x, \Delta y \to 0} \sum f(x_i, y_j) \, \Delta x \, \Delta y = \iint_R f(x, y) \, dA$$

$$\lim_{\Delta x, \Delta y \to 0} \sum_{x=a}^{x=b} f(x, y) \, dx \, dy = \lim_{x=a}^{x=b} \lim_{y=c}^{y=d} f(x, y) \, dy \, dx,$$

where
$$R: a < x < b, c < y < d$$

- Example: Find the volume under f(x,y) = 2 + xy and above the region in the xy-plane given by: 0 < x < 2, 0 < y < 4. (This is example is shown in video above.)
 - Integrating with respect to x first.
 - Integrating with respect to y first.
- You Try It

- 1. Evaluate $\int_{-\infty}^{3} \int_{-\infty}^{2} 5 + x^2 + y^2 dy dx$
- 2. Switch the order of integration to confirm you get the same answer either way. <u>Video Solution to 1 and 2</u>
- 3. Interpret your answer as a volume. Solution Part 3
- 4. If $f(x,y) = 5 + x^2 + y^2$ represented the temperature of a metal plate in the xy plane such that 1 < x < 3, 0 < y < 2, find the average temperature of the plate over this region. Solution Part 4

- Example 1: Evaluate $\prod_{R} 3xy^3 dA$ where R is the region shown in the graph.
 - dy dx
 - dx dy

- Example 3: Write $\int_{R} dA$ as an iterated integral for the shaded region R.

You Try It

Section 16.2 #21 and Section 16.2 #33. Answer in the text.