Day 13 Directional Derivatives of Functions of Three Variables

• Everything we said about directional derivatives of functions of 2 variables, f(x, y) carries over to functions of 3 variables, f(x, y, z).

$$\circ \quad \nabla f = f_x \hat{i} + f_y \hat{j} + f_z \hat{k} \text{ and } \vec{u} = u_1 \hat{i} + u_2 \hat{j} + u_3 \hat{k}$$

- $f_{\vec{u}}(a,b,c) = \vec{\nabla}f \cdot \vec{u} = f_x(a,b,c)u_1 + f_y(a,b,c)u_2 + f_z(a,b,c)u_3$
- Example: Given $f(x, y, z) = x^2 + y^2 + z^2$, find f_{ii} at the point (1,2,3) in the direction of the point (1,1,1).
- 🖉 You Try It
 - Section 14.5 #19 Answer in text
- <u>Properties of ∇f in 3 space are similar.</u>
 - $\vec{\nabla} f$ points in the <u>direction</u> of Greatest Rate of Increase in f
 - $\circ \nabla f$ points in the <u>direction</u> of Greatest Rate of Decrease in *f*
 - $\|\vec{\nabla}f\|$ gives the greatest <u>rate</u> of increase.
 - ∇f is perpendicular to the level <u>surface</u> of *f* at the point (*a*,*b*,*c*)
- Finding Tangent planes using $\overline{\nabla} f$.
 - By thinking of $x^2 + y^2 + z^2 = 14$ as a level surface of the function $f(x, y, z) = x^2 + y^2 + z^2$, find the equation of the tangent plane to the sphere $x^2 + y^2 + z^2 = 14$ at the point (1,2,3).
 - 🖉 You Try It

Section 14.5 #39 Answer in text.

Higher Order Partials

- You can continue to take derivatives to find 2nd order derivatives and higher.
 - Example 1: Given $f(x, y) = x^2y^4 + 5x^2 + e^{2y}$, find the first and second order partial derivatives. Also show some higher order derivatives.
 - Example 2: Given $f(x, y) = xe^{xy}$, find the first and second order partial derivatives.
 - 🖉 You Try It

Section 14.7 #5 Answer in text.

- Recall from Calculus I that the second derivative tells you how fast the first derivative is changing. Graphically, this means it gives you information where the function is concave up, f'' > 0, and where the function is concave down, f'' < 0.
- The same is true in Calculus III
 - $f_{xx} > 0$: concave up in the x direction.
 - $f_w > 0$: concave up in the y direction.
 - $f_{xx} < 0$: concave down in the x direction.

- $f_w < 0$: concave down in the y direction.
 - Example: Consider the function $f(x, y) = x^2 y^2$. Is $f_{xx}(0, 0)$ positive, negative or 0? Is $f_{yy}(0, 0)$ positive, negative or 0?

The Chain Rule for functions of many variables

- Recall from Calculus I.....
 - If y is a function of x, or y(x), and x is a function of t, or x(t), then dy dy dx

$$\frac{dt}{dt} - \frac{dt}{dx} dt$$

- \circ $\,$ We only need one chain rule since y can only be a function of one variable.
- In Calculus III.....
 - We need a different chain rule for each situation depending on the different combination of variables.
 - Example: Suppose z(x, y), x(t) and y(t).
 - a. Write the chain rule for $\frac{dz}{dt}$ by making a tree diagram.
 - b. Apply the chain rule you found in part a for the functions: $z(x, y) = x^2 + y^2$, $x(t) = \sin(2t)$ and $y(t) = \cos(2t)$.
 - Example: Suppose z(x, y), $x(r, \theta)$ and $y(r, \theta)$.
 - a. Write the chain rule for $\frac{\P z}{\P r}$ and $\frac{\P z}{\P \theta}$ by making a tree diagram.
 - b. Apply the chain rule you found in part a for the functions: $z(x,y) = x^2 + y^2$, $x(r,\theta) = r\cos(\theta)$ and $y(r,\theta) = r\sin(\theta)$.
 - 🖉 You Try It

Section 14.6 #5 Section 14.6 #9 Answers in Text.