Day 12

More on the Directional Derivative

• <u>Recall: Directional derivative</u> = $f_{\vec{u}}(a,b) = \vec{\nabla}f \cdot \vec{u}$, where $\vec{\nabla}f = f_x\hat{i} + f_y\hat{j}$ and

 $\vec{u} = u_1 \hat{i} + u_2 \hat{j}.$

- f_x and f_y are "directional derivatives"
- Need 3 things to find a directional derivative:
 - 1. The function, f(x, y).
 - 2. The point, (a, b).
 - 3. The direction of interest, \vec{u} .
- $\vec{\nabla} f$ is determined by the partial derivatives of the function at the point it does not change once you have chosen the point.
- Once you have chosen the (a, b) point the only thing you get to choose is the direction you move, \vec{u} .
- Properties of the Directional Derivative
 - For a given point (a,b),of all the directions you can choose to move, in which direction is the greatest rate of change?
 - $\vec{\nabla} f$ points in the direction (since it is a vector) of Greatest Rate of Increase in f
 - $-\vec{\nabla}f$ points in the <u>direction</u> of Greatest Rate of Decrease in *f*.
 - $\|\vec{\nabla}f\|$ gives the rate (since it is a scalar) of change of *f* in the direction of Greatest Rate of Increase, or the greatest rate of increase.
 - <u>Example</u>: The temperature, in F°, at a location in the xy plane, measured in cm, is given by $f(x, y) = 150 x^2 y^2$.
 - a. If you are located at the point (3,7), in which direction is the temperature increasing fastest?
 - b. How fast is the temperature changing in that direction?
 - <u>Computer Demo</u>
 - ∇f is <u>perpendicular to the contour</u> of *f* at the point (*a*,*b*).
 - $\|\vec{\nabla}f\|$ is large when the contours are close together and small when the contours are far apart.
 - <u>Example</u>: Draw in the direction of $\vec{\nabla} f$ at the point (1,1) on the contour diagram. Also indicate where $\|\vec{\nabla} f\|$ would be larger in
 - the contour plot.

P

- You Try It Section 14.4 # 39 Answer in Text Section 14.4 # 51 Answer in Text
- Recap Properties of ∇f at a given point (a,b).

- $\vec{\nabla} f$ points in the <u>direction</u> of Greatest Rate of Increase in f
- \circ $-\vec{\nabla}f$ points in the <u>direction</u> of Greatest Rate of Decrease in f
- $\circ \|\vec{\nabla} f\| \text{ gives the greatest } \underline{\text{rate}} \text{ increase.}$
- $\vec{\nabla} f$ is perpendicular to the contour, or level curve, of f at the point (a,b)
- $\|\vec{\nabla} f\|$ is large when the contours (or level curves) are close together and small when the contours are far apart.