Day 10 Local Linearity and Tangent Planes

- Local Linearity
 - <u>Recall from Calculus I</u>.....
 - Zoom in on the graph of $y(x) = e^{-0.2x} \sin(4x)$ at a particular point to see that as you get closer to the point the graph appears linear.
 - The derivative at that point will be the slope of the tangent line at that point.
 - The tangent line at that point will approximate the function y(x) well close to that point.
 - In fact, close to that point the y value on the function, $y(x) = e^{-0.2x} \sin(4x)$, will be approximately equal to the y-value on the tangent line. The further away you get from the point, potentially, the worse the tangent line will approximate the function value.
 - o <u>In Calculus III</u>.....
 - Linear in 3D means a plane.
 - Zoom in on the graph of $z(x, y) = x^2 + y^3$ near the point (2,1,5).
 - Zoom in on the contour diagram near the point.
 - At the point (a,b), the slope in the x-direction, m, will be $f_x(a,b)$ and the slope in the y-direction, n, will be $f_y(a,b)$.
 - As in 2 space, the plane will approximate the function well near the point.

Tangent Planes

- Recall from Calculus I......
 - Equation of tangent line
 - $y y_1 = m(x x_1)$
 - $y-f(x_1) = f'(x)(x-x_1)$
 - $y = f'(x)(x x_1) + f(x_1)$
- 🖉 You Try It
 - Find the equation of the tangent line to the function
 - $y(x) = e^{-0.2x} \sin(4x)_{\text{at } x} = 1.825$ Answer: y = 1.343x-1.86
- o In Calculus III.....
 - Equation of *tangent plane*
 - z = m(x-a) + n(y-b) + f(a,b)
 - $z = f_x(a,b)(x-a) + f_y(a,b)(y-b) + f(a,b)$
 - This is equation of the tangent plane at the pint (a,b).
 - As we said when discussing local linearity, the function value f(x,y) will be approximately equal to the z on the line near the point (a,b). Or, $f(x, y) \gg z$.

• Example: Find the equation of the tangent plane to $z(x, y) = x^2 + y^3$ at the point (2,1).

You Try It Section 14.3 #3 Answer in text.