

Section 4.1 The 2×2 contingency table

		Class 1	Class 2		7
	Population 1	<i>O</i> ₁₁	<i>O</i> ₁₂	n_1	
	Population 2	<i>O</i> ₂₁	<i>O</i> ₂₂	<i>n</i> ₂	
		<i>C</i> ₁	C ₂	N	
		2×2 conting	gency table		
Questi	ion: Does the treatn	nent significan	tly alter the p	roportion of o	objects in each
of	the two categories?)			
	hi-squared test for mptions	differences in	probabilities		
1. Ea	ch sample is a rand	iom sample.			
<u>с</u> ть	e two samples are	independent.			
2.11	ch observation ma	y be categoriz	ed either into	class 1 or c	lass 2.
	en observation ma				

		Class 1	Class 2		
Popul	ation 1	<i>O</i> ₁₁	<i>O</i> ₁₂	n_1	
Popul	ation 2	<i>O</i> ₂₁	<i>O</i> ₂₂	n_2	
		C_1	C ₂	N	
$p_2 = probabilit$	-				
$p_2 = probabilit$	y that an		rom populatio		
atistical test: Setting 1	y that an o Se	observation f	rom populatio	n 2 will	
$H_0: p_1 \leq p_2$	y that an G Se	observation f etting 2 $p_0: p_1 \ge p_2$	rom populatio Setting 3	n 2 will 1	

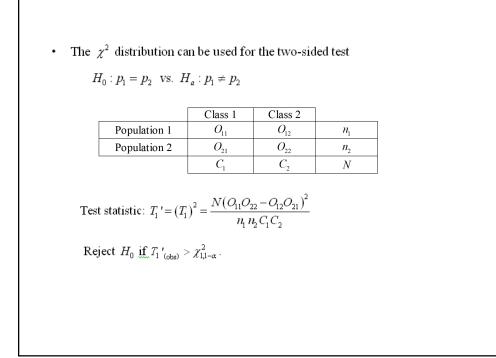
Setting 1. $H_0: p_1 \le p_2$ $H_a: p_1 > p_2$ Reject H_0 if $T_{I(obs)} > z_{1-\alpha}$. p-value = $P(Z \ge T_{I(obs)})$ Setting 2. $H_0: p_1 \ge p_2$ $H_a: p_1 < p_2$ Reject H_0 if $T_{I(obs)} < z_{\alpha}$. p-value = $P(Z \le T_{I(obs)})$ Setting 3. $H_0: p_1 = p_2$ $H_a: p_1 \neq p_2$ Reject H_0 if $T_{I(obs)} > z_{1-\alpha/2}$ or $T_{I(obs)} < z_{\alpha/2}$. p-value = $2 \min \left\{ P(Z \ge T_{I(obs)}), P(Z \le T_{I(obs)}) \right\}$

Two carloads of manufactured items are sampled randomly to determine if the proportion of defective items is different for the two carloads. From the first carload 13 of the 86 items were defective. From the second carload 17 of the 74 items were considered defective.

	Defective	Nondefective	
Carload 1			
Carload 2			

 p_1 = probability that an item from carload 1 is defective

 p_2 = probability that an item from carload 2 is defective


EXAMPLE 2

At the U.S. Naval Academy a new lighting system was installed throughout the midshipmen's living quarters. It was claimed that the new lighting system resulted in poor eyesight due to a continual strain on the eyes of the midshipmen. Random samples are taken before and after the installation of the new lights. The results are shown in the table.

	Good Vision	Poor Vision
Old Lights	<i>O</i> ₁₁ =714	<i>O</i> ₁₂ =111
New Lights	<i>O</i> ₂₁ =662	O ₂₂ =154

Let p_1 be the probability that a randomly selected graduating midshipman had good vision under the old lighting system.

Let p_2 be the probability that a randomly selected graduating midshipman had good vision under the new lighting system.

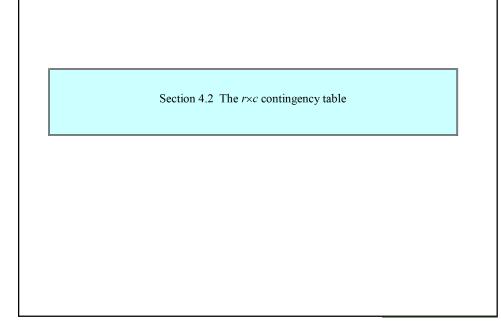
Column 1Row 1xRow 2 $c-x$ cAssumptions:1. Each observation is classified2. The row and column totals	Column 2 $r-x$ $N-r-c+x$ $N-c$	$\frac{r}{N-r}$ N	
Row 2 $c-x$ cAssumptions:1. Each observation is classified2. The row and column totals	$\frac{N-r-c+x}{N-c}$	$\frac{N-r}{N}$	
<i>c</i> Assumptions: 1. Each observation is classified 2. The row and column totals	N-c	N	-
Assumptions: 1. Each observation is classifie 2. The row and column totals			-
 Each observation is classified The row and column totals 	d into exactly o	one cell.]
p_1 = probability of an item in r p_2 = probability of an item in r	ow 1 being class	sified into co	

	Column 1	Column 2	
Row 1	x	r-x	r
Row 2	c-x	N-r-c+x	N-r
	С	N-c	Ν

Statistical test:

Setting 1	Setting 2	Setting 3
$H_0: p_1 \le p_2$	$H_0: p_1 \ge p_2$	$H_0: p_1 = p_2$
$H_a: p_1 > p_2$	$H_a: p_1 < p_2$	$H_a: p_1 \neq p_2$

Test statistic: T_2 = number of items in cell (row 1, column 1)


When $p_1 = p_2$, the distribution of T_2 is a hypergeometric distribution.

$$P(T_2 = x) = \frac{\binom{r}{x}\binom{N-r}{c-x}}{\binom{N}{c}} \quad (x = 0, 1, 2, \cdots, \min(r, c))$$

		Column 1	Column 2	
	Row 1	x	r-x	r
	Row 2	c-x	N-r-c+x	N-r
		С	N-c	Ν
Setting 2 p-v	alue = $P(T_2 \ge T_{20})$ 2. $H_0: p_1 \ge p_2$ alue = $P(T_2 \le T_2)$ 3. $H_0: p_1 = p_2$	$H_a: p_1 < p_2$ (obs)		
<i>p</i> -v	alue = $2 \min \{P\}$	$(T_2 \ge T_{2(\text{obs})}), P(T_2 \ge T_{2(\text{obs})})$	$\left(T_2 \leq T_{2(\text{obs})}\right)$	
	X			

Fourteen newly hired business majors, 10 males and 4 females, all equally qualified, are being assigned by the bank president to their new jobs. Ten of the new jobs are as tellers, and four are as account representatives. The null hypothesis is that males and females have equal chances at getting the more desirable account representative jobs. The one-sided alternative of interest is that females are more likely than males to get the account representative jobs. Only one female is assigned a teller position. Can the null hypothesis be rejected?

	Representative	Teller
Male		
Female		

	Class 1	Class 2	 Class c	
Population 1	<i>O</i> ₁₁	<i>O</i> ₁₂	 O _{1c}	n
Population 2	<i>O</i> ₂₁	<i>O</i> ₂₂	 <i>O</i> _{2c}	n
Population r	<i>O</i> _{r1}	<i>O</i> _{r2}	 O _{rc}	n
	<i>C</i> ₁	С,	 C _c	Λ

Question: Does the treatment significantly alter the proportion of objects in each of the c categories?

Assumptions

1. Each sample is a random sample.

2. All the samples are independent.

3. Each observation is categorized into exactly one category or class.

	Class 1	Class 2		Class c	
Population	1 <i>O</i> ₁₁	<i>O</i> ₁₂		O _{lc}	n_1
Population	2 O ₂₁	<i>O</i> ₂₂		<i>O</i> _{2c}	<i>n</i> ₂
Population	r 0 _{r1}	<i>O</i> _{r2}		O _{rc}	n _r
L	C ₁	C2		C _c	N
		tion from p	opulatio	on <i>i</i> will be	in colun
$(i=1,2,\cdots,r;)$		tion from p	opulatio	on <i>i</i> will be	in colun
atistical test: $H_0: p_{1j} = p_{2j} =$	$j=1,2,\cdots,c$	= 1, 2,, c)			
$(i = 1, 2, \dots, r;$ atistical test: $H_0: p_{1j} = p_{2j} =$	$j = 1, 2, \dots, c$ $= \dots = p_{rj} (j = probabilities in$	$= 1, 2, \cdots, c$) n the same	column	are the sam	e.)

	Class 1	Class 2		Class c	
Population 1	O_{11}	<i>O</i> ₁₂		O _{1c}	n_1
Population 2	<i>O</i> ₂₁	<i>O</i> ₂₂		<i>O</i> _{2c}	n_2
•••					
Population r	O_{r1}	O_{r2}		O _{rc}	n_r
	C_1	C2		C _c	N
$_{j} = \text{observed n}$ $_{j} = \text{expected n}$					
	of $T \cdot T$	$=\sum_{i=1}^{r}\sum_{j=1}^{c}\frac{O_{ij}^{2}}{O_{ij}^{2}}$	$\frac{j}{j} - N$	$\left(E_{ij}=\frac{n_i}{N}\right)$	$\left[\frac{C_j}{2}\right]$

		Class 1	Class 2		Class c		
	Population 1	<i>O</i> ₁₁	<i>O</i> ₁₂		O _{lc}	<i>n</i> ₁	
-	Population 2	<i>O</i> ₂₁	<i>O</i> ₂₂		<i>O</i> _{2c}	<i>n</i> ₂	
-							
	Population r	O_{r1}	<i>O</i> _{r2}		O _{rc}	n _r	
L		C_1	C_2		C _c	Ν	
	the transformation of transfo						
Mini	mum requirem	nent for th	e χ^2 app	roximat	ion to be	valid:	
1	. All E_{ij} 's are	e greater t	han 0.5.				

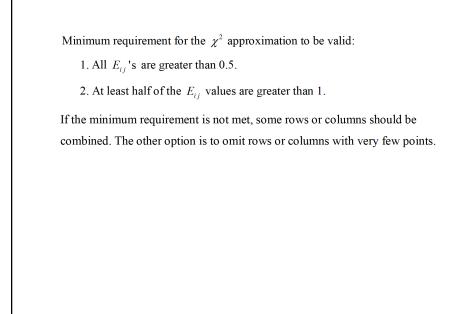
2. At least half of the E_{ij} values are greater than 1.

If the minimum requirement is not met, some rows or columns should be combined. The other option is to omit rows or columns with very few points.

A sample of students randomly selected from private high schools and a sample of students randomly selected from public high schools were given standardized achievement tests with the following results.

	0-275	276-350	351-425	426-500
Private School	6	14	17	9
Public School	30	32	17	3

Is there any significant difference between the test scores of private and public high school students?


	Column 1	Column 2		Column c	
Row 1	<i>O</i> ₁₁	<i>O</i> ₁₂		<i>O</i> _{1c}	R_1
Row 2	<i>O</i> ₂₁	<i>O</i> ₂₂		<i>O</i> _{2c}	R_2
Row r	O_{r1}	<i>O</i> _{r2}		O _{rc}	R_r
	<i>C</i> ₁	C2		C _c	Ν
Assumption	s:				
1. The sam	ple of N obser	vations is a rand	dom sam	ple. (Each obse	rvation
the same	e probability as	every other ob	servatior	n of being class	ified in r
and colu	ımn j, independ	lently of the oth	ner obser	vations.)	
		ssified into exa		,	to one
		olumn accordir	-		

Florida International University

	Column 1	Column 2		Column c	
Row 1	<i>O</i> ₁₁	<i>O</i> ₁₂		O_{1c}	R_1
Row 2	<i>O</i> ₂₁	<i>O</i> ₂₂		<i>O</i> _{2c}	R_2
Row r	<i>O</i> _{r1}	<i>O</i> _{r2}		O _{rc}	R_r
	<i>C</i> ₁	C2	•••	C _c	N
	$r; j = 1, 2, \cdots,$ y that an obser	,	in row <i>i</i>	$i (i = 1, 2, \cdots, r)$)
	y that an obser	vation will be	in colu	mn j (j = 1, 2,	$\cdots, c)$
= probabilit					
= probabilit					
= probabilit					

Row 1 O_{11} O_{12} \cdots O_{1c} R_1 Row 2 O_{21} O_{22} \cdots O_{2c} R_2 \cdots \cdots \cdots \cdots \cdots \cdots Row r O_{r1} O_{r2} \cdots O_{rc} R_r C_1 C_2 \cdots C_c N		Column 1	Column 2		Column c	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Row 1	<i>O</i> ₁₁	<i>O</i> ₁₂		<i>O</i> _{1c}	R_1
Row r O_{r1} O_{r2} O_{rc} R_r C_1 C_2 C_c N cital test: $f_0: p_{ij} = p_{i.} p_{.j}$ for all i and j(The event "an observation is in row i" is independent of the event)	Row 2	<i>O</i> ₂₁	<i>O</i> ₂₂		<i>O</i> _{2c}	R_2
$C_{1} \qquad C_{2} \qquad \cdots \qquad C_{c} \qquad N$ cical test: $C_{0}: p_{ij} = p_{i} p_{j} \text{ for all } i \text{ and } j$ (The event "an observation is in row <i>i</i> " is independent of the event						
tical test: $p_i : p_{ij} = p_{i}, p_{j}$ for all <i>i</i> and <i>j</i> (The event "an observation is in row <i>i</i> " is independent of the event)	Row r	<i>O</i> _{<i>r</i>1}	<i>O</i> _{r2}		O _{rc}	R_r
$\int_{0} : p_{ij} = p_{i} p_{j} \text{ for all } i \text{ and } j$ (The event "an observation is in row <i>i</i> " is independent of the event)		<i>C</i> ₁	C_2		C _c	Ν
i , $n \neq n$, n for at least one pair of i and i	"an obser	vation is in c	olumn j" for	all <i>i</i> and		
$a: p_{ij} \neq p_i, p_{,j}$ for at least one pair of <i>i</i> and <i>j</i>						1
The event "an observation is in row i " is not independent of the even "an observation is in column j " for all i and j .	(The even					it of the

	Column 1	Column 2		Column c	
Row 1	<i>O</i> ₁₁	<i>O</i> ₁₂		O _{1c}	R_1
Row 2	<i>O</i> ₂₁	<i>O</i> ₂₂		<i>O</i> _{2c}	R_2
Row r	<i>O</i> _{<i>r</i>1}	<i>O</i> _{r2}		O _{rc}	R_r
	<i>C</i> ₁	C2		C _c	N
other expressio	on of $T: T =$	$= \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{O_{ij}^2}{E_{ij}} - l$	$V \left(E_{i}\right)$	$_{j} = \frac{R_{i}C_{j}}{N}$	

A random sample of students at a certain university was classified according to the college in which they were enrolled and also according to whether they graduated from a high school in the state or out of the state. The results were put into a 2×4 contingency table.

	Engineering	Arts and Sciences	Home Economics	Other
In State	16	14	13	13
Out of State	14	6	10	8

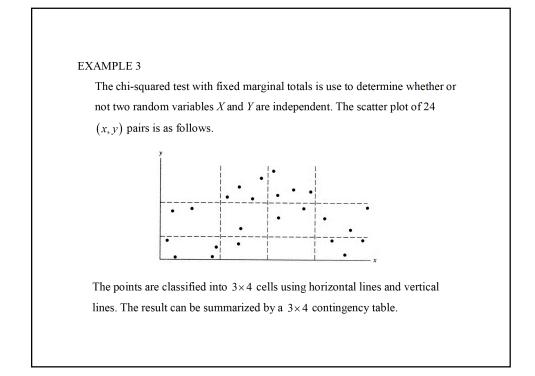
Is there any correlation between the students' college choices and their status (in state or out of state)?

EXAMPLE (Flu Vaccine)

A survey was conducted to evaluate the effectiveness of a new flu vaccine that had been administrated in a community. The following table shows the outcomes of 1000 residents in the community.

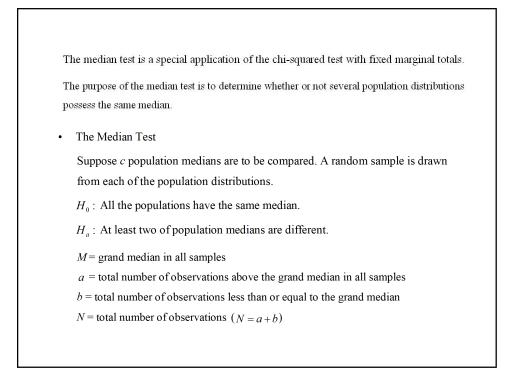
	No Vaccine	One Shot	Two Shots	Total
Flu	24	9	13	46
No Flu	289	100	565	954
Total	313	109	578	1000

Do the data provide sufficient evidence to indicate that the two classifications (vaccine category and flu occurrence category) are dependent? Use α =0.01.

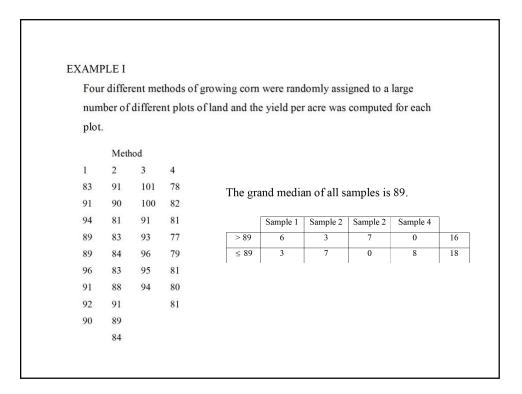

•	The chi-squared	test with fixed	marginal totals
---	-----------------	-----------------	-----------------

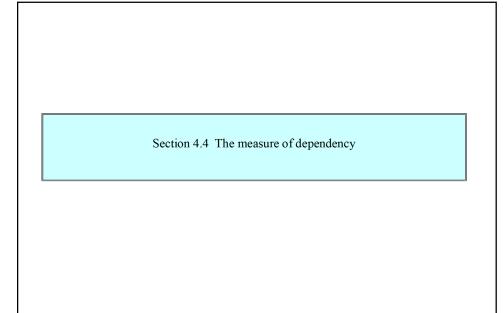
	Column 1	Column 2	 Column c	
Row 1	<i>O</i> ₁₁	<i>O</i> ₁₂	 O_{1c}	R_1
Row 2	<i>O</i> ₂₁	<i>O</i> ₂₂	 O_{2c}	<i>R</i> ₂
Row r	O_{r1}	<i>O</i> _{<i>r</i>2}	 O _{rc}	R _r
<u>.</u>	C_1	C ₂	 C_{c}	N

Assumptions:


- 1. Each observation is classified into exactly one cell.
- 2. The row totals and column totals are fixed, not random.
- Each observation has the same probability as every other observation of being classified into cell (i, j).

statist	ical test:
H_{0}	$p_{ij} : p_{ij} = p_{ij} p_{jj}$ for all i and j
	(The event "an observation is in row <i>i</i> " is independent of the event "an observation is in column <i>j</i> " for all <i>i</i> and <i>j</i> .
H_{a}	$a: p_{ij} \neq p_{i}, p_{j}$ for at least one pair of <i>i</i> and <i>j</i>
	The event "an observation is in row i " is not independent of the event "an observation is in column j " for all i and j .
Test S	Statistic: $T = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^2}{E_{ij}} \left(E_{ij} = \frac{R_i C_j}{N} \right)$
Anoth	ter expression of T : $T = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{O_{ij}^2}{E_{ij}} - N \left(E_{ij} = \frac{R_i C_j}{N}\right)$
Rejec	t H_0 if $T_{(obs)} > \chi^2_{(r-1)(c-1), 1-\alpha}$
<i>p</i> -va	lue = $P(T \ge T_{\text{(obs)}})$ $(T \sim \chi^2_{(r-1)(c-1)})$




Row 1 0 Row 2 2 Row 3 4	4 1 1	4 2 0	0 3
	1		3
Row 3 4	1		_
		0	3

Section 4.3 The median test

> Median ≤ Median	0 ₁₁ 0 ₂₁	<i>O</i> ₁₂			
≤ Median	0 ₂₁			O _{1c}	а
		<i>O</i> ₂₂		<i>O</i> _{2c}	b
	<i>n</i> ₁	<i>n</i> ₂		n _c	Ν
est Statistic: $T =$ nother expression f a = b, then $T =Reject H_0 if T_{\text{(obs}}p-value = P(T \ge$	of $T: T = \frac{1}{2}$ = $\sum_{i=1}^{c} \frac{(O_{1i} - O_{1i})}{n_i}$ = $\chi^2_{c-1, 1-\alpha}$	$\frac{N^2}{ab} \sum_{j=1}^{c} \frac{\mathcal{O}_{1j}}{n_i} - \mathcal{O}_{2j}^2$	Na b		

•	Use the	χ^2	test statistic as	a measure of	dependency.
---	---------	----------	-------------------	--------------	-------------

EXAMPLE 1 (This is an example in Section 4.2.)

A sample of students randomly selected from private high schools and a sample of students randomly selected from public high schools were given standardized achievement tests with the following results.

	0-275	276-350	351-425	426-500	
Private School	6	14	17	9	46
Public School	30	32	17	3	82

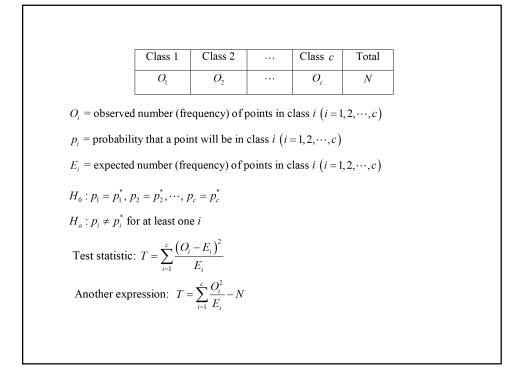
Is there any correlation between the test score and the type of school (private or public)?

	Column 1	Column 2		Column c			
Row 1	<i>O</i> ₁₁	<i>O</i> ₁₂		O _{lc}	R_1		
Row 2	<i>O</i> ₂₁	<i>O</i> ₂₂		<i>O</i> _{2c}	R_2		
Row r	O_{r1}	<i>O</i> _{r2}		O _{rc}	R_r		
L	C_1	C ₂		C _c	Ν		
can be shown		1, it is an indic	ation tha	t the row class	ification		
and the column classification are not independent.							

XAMPLE 1 (Continu	ued)				
ſ	0-275	276-350	351-425	426-500	
Private School	6	14	17	9	46
Public School	30	32	17	3	82
	36	46	34	12	128

Pearson's Contingency Coefficient

$$R_2 = \sqrt{\frac{T}{N+T}}$$


Pearson's Mean-Square Contingency Coefficient

$$R_3 = \frac{T}{N}$$

• Tschuprow's Coefficient

$$R_4 = \sqrt{\frac{T}{N\sqrt{(r-1)(c-1)}}}$$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Class	1 Class 2		Class c	Total				
p -value = $P(T \ge T_{(obs)})$ $(T \sim \chi^2_{c-1})$ Minimum requirement for the χ^2 approximation to be valid:	O_1	O_2		<i>O</i> _c	N				
			1)						
1. All E_i 's are at least 1.	Minimum requirement for the χ^2 approximation to be valid:								
	1. All E_i 's are at least 1.								
2. No more than 20% of E_i 's should be smaller than 5.									
If the minimum requirement is not met, some cells should be combined. The ot option is to omit cells with very few points.	_			ells should b	e combined. The	othe			

A certain computer program is supposed to furnish random digits. If the program is accomplishing its purpose, the computer prints out digits (2, 3, 7, 4, etc.) that seem to be observations on independent and identically distributed random variables, where each digit 0, 1, 2, ..., 8, 9 is equally likely (probability 0.1) to be obtained.

 H_0 : The numbers appear to be random digits. $(p_0 = p_1 = \cdots = p_9 = 0.1)$

 H_a : Some digits are more likely than others.

15	78748	3416	470	5188	926	6936	6936349612				
46	53843	3213	028	2868	892	3928057043					
51	01259	9393	983	7006	785	301	16799	938			
71	22863	3085	652	8271	107	2956427027					
26	2671728075		9759178719		9373	33095	535				
83	8363265100		2546793732		2212122529						
94	9453087720		3976759377		9593511031						
56	5605373242		181	9898	287	3872181027					
34	3494768396		929	6177	240	8620774591					
4659773922		9246724287		8326143939							
	0	1	2	3	4	5	6	7	8	9	Total
Observed	22	28	41	35	19	25	25	40	30	35	300

Efron and Morris					
players to have 4	5 times	s at bat in 1970 .	The play	ers' names and the	e number of
hits they got in th	eir 45	times at bat are	given as t	follows.	
Clemente	18	Kessinger	13	Scott	10
F. Robinson	17	L. Alvarado	12	Petrocelli	10
F. Howard	16	Santo	11	E. Rodriguez	10
Johnstone	15	Swoboda	11	Campaneris	9
Berry	14	Unser	10	Munson	8
Spencer	14	Williams	10	Alvis	7
Test the null hypo	othesis	that the data fol	llow a bir	omial distribution	n with
n = 45.					

EXAMPLE 3
Fifty two-digit numbers were drawn at random from a telephone book, and the
chi-squared test for goodness of fit is used to see if they could have been
observations on a normally distributed random variable. The numbers, after
being arranged in order from the smallest to the largest, are as follows.
23 23 24 27 29 31 32 33 33 35
36 37 40 42 43 43 44 45 48 48
54 54 56 57 57 58 58 58 58 59
61 61 62 63 64 65 66 68 68 70
73 73 74 75 77 81 87 89 93 97
H_0 : These numbers are from a normal distribution.
H_a : These numbers are not from a normal distribution.